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Abstract
Background Artificial intelligence (AI) is influencing our society on many levels and has broad implications for the future 
practice of hematology and oncology. However, for many medical professionals and researchers, it often remains unclear what 
AI can and cannot do, and what are promising areas for a sensible application of AI in hematology and oncology. Finally, 
the limits and perils of using AI in oncology are not obvious to many healthcare professionals.
Methods In this article, we provide an expert-based consensus statement by the joint Working Group on “Artificial Intelli-
gence in Hematology and Oncology” by the German Society of Hematology and Oncology (DGHO), the German Association 
for Medical Informatics, Biometry and Epidemiology (GMDS), and the Special Interest Group Digital Health of the German 
Informatics Society (GI). We provide a conceptual framework for AI in hematology and oncology.
Results First, we propose a technological definition, which we deliberately set in a narrow frame to mainly include the 
technical developments of the last ten years. Second, we present a taxonomy of clinically relevant AI systems, structured 
according to the type of clinical data they are used to analyze. Third, we show an overview of potential applications, includ-
ing clinical, research, and educational environments with a focus on hematology and oncology.
Conclusion Thus, this article provides a point of reference for hematologists and oncologists, and at the same time sets forth 
a framework for the further development and clinical deployment of AI in hematology and oncology in the future.

Keywords Artificial intelligence · Machine learning · Digital health · Large language models · Computer vision

Introduction: The need for AI in hematology 
and oncology

Although Artificial intelligence (AI) is not a new research 
field (Schmidhuber 2022), recent developments driven by 
the availability of data sets and computing power, in par-
ticular, have led to the view that this rapidly evolving field 
may have the potential to transform our society (Rajpurkar 
et al. 2022). In the last ten years, AI has made significant 
advances in many different areas of society, including med-
icine. Hematology and oncology are a data-intensive and 
innovative medical specialty with a high clinical need for 
improved workflows and advanced methods for diagnosis 

and treatment guidance. Due to aging populations, cancer 
will become more prevalent in the next decades. At the same 
time, our capabilities to diagnose and treat cancer have mul-
tiplied in the recent past, and will continue to do so in the 
future. This creates a massively growing amount of data 
and an increasing complexity of clinical workflows. The 
complexity is further increased by advances in all medical 
specialties involved in treating cancer patients, including 
hematology and oncology, radiology, pathology, surgery, 
human genetics, nuclear medicine, and others. Patients′ het-
erogeneity in these regards require individualized solutions 
for which new scientific approaches need to be developed.

AI requires data to be available in a digital format. Digi-
tal data can be structured (such as data in a spreadsheet 
table or a database with pre-defined fields) or unstruc-
tured (such as unsegmented and/or non-annotated images 
or free text data). Many of these data types are routinely 
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generated when diagnosing and treating cancer. Image 
data such as radiological or nuclear medicine imaging, as 
well as cytology or pathology images, are used to diagnose 
and stage tumors. Cancer subtyping is routinely performed 
using molecular and genetic testing, which can generate 
image data (for example, from fluorescence in situ hybridi-
zation or immunohistochemistry), genetic sequencing data 
(for example, genome, methylome, transcriptome data), 
metabolome data, proteome data, or other types. Aside 
from these data types, determining an optimal treatment 
strategy for a patient entails integrating a large number of 
highly variable pieces of information obtained from clini-
cal examination, screening of previous medical records, 
and patient preferences. Moreover, general recommenda-
tions as derived, e.g., from randomized clinical trials are 
often not straight-forwardly transferable to every patient 
but require individual adaptations in the light of the indi-
vidual patient characteristics.

In this setting, AI can be used for three purposes: (indi-
vidualized) clinical care, research, and education. First, AI 
has the potential to be integrated into clinical routines and be 
used as a tool to aid humans in daily clinical practice. In this 
article, we mainly focus on this practical application of AI, 
since it can provide direct benefits to patients and physicians 
in hematology and oncology. For example, AI approaches 
and methods can be used to identify patterns in past cases 
that may help to predict how well a particular patient will 
respond to a specific treatment. Also, AI can assist to make 
treatment recommendations based on specific characteristics 
of each individual patient's tumor and monitor patients over 
time. In addition to this practical clinical use, there are two 
other aims. AI can be used as a research tool, allowing us to 
draw new scientific insights from clinical data such as new 
disease entities or pathomechanisms. In the future, it might 
be possible to better understand changes in the molecular-
genetic and cellular composition of cancers, to derive new 
applications for existing drugs, to identify hidden patterns 
in oncological image data, to identify new therapy targets or 
pathologic processes, or to identify new biomarkers (Kleppe 
et al. 2021;  Shmatko et al. 2022; Cifci et al. 2022). Finally, 
AI can be used as a tool for medical education, for exam-
ple through the synthesis of data for educational purposes 
(Dolezal, et al. 2022; Krause et al. 2021; Chen et al. 2021). 
As populations age and cancer become more prevalent, more 
trained personnel are required to care for cancer patients. 
AI can potentially help to train these experts, although this 
aspect is still an emerging field in hematology and oncology.

To address, shape, and guide these advancements, the 
German Society of Hematology and Oncology (DGHO), 
the German Association for Medical Informatics, Biometry 
and Epidemiology (GMDS) and the Special Interest Group 
Digital Health of the German Informatics Society together 
established a joint working group “AI in Hematology and 

Oncology”, entrusted with serving as a central hub for all 
AI-related activity in the field of hematology, oncology and 
cancer research. The aim of this article, which represents the 
result of a collaborative effort within this group, is to provide 
a consensus definition of AI applications in hematology and 
oncology and to map out the most promising sub-fields for 
the near future.

Definitions and terminology: what is AI 
in biomedicine?

In the last decades, the field of AI has co-evolved with and 
drawn ideas from multiple adjacent research disciplines, 
and the terminology can be confusing (Fig. 1A). The terms 
machine learning (ML), deep learning (DL) and artificial 
intelligence (AI) have fuzzy boundaries which are heav-
ily debated (Bzdok et al. 2018). In this article, we aim to 
provide a pragmatic definition of these methods, aiming to 
reflect the status quo in the biomedical research literature. 
Intuitively, a good example is as follows: The term "artificial 
intelligence" focuses on the word “intelligence”, implying 
that a machine performs some kind of intelligent service. 
The term "machine learning" focuses on the word “learn-
ing”, i.e., a machine learns something based on data with a 
certain aim, for example a disease model or a classifier. In a 
more formal, yet simplified view, two major sub-fields of AI 
have alternated and co-existed over the last decades: on the 
one hand, rule-based approaches, in which a human expert 
defines a fixed set of rules to classify data. This works well 
for very simple tasks based on structured data, but invariably 
fails for unstructured data and is also often not optimal for 
large quantities of structured data. On the other hand, ML, 
which does not encode any fixed rules, learns patterns from 
data. In the last five years, the ML paradigm within AI has 
made striking breakthroughs. In medicine, several ML-based 
algorithms have achieved regulatory approval in the last five 
years, while rule-based systems within AI are becoming less 
relevant to the practitioner (Shmatko et al. 2022; Benjamens 
et al. 2020). Hence, in this article, we will not discuss rule-
based systems.

Within ML, there are three major classes of training 
strategies: reinforcement learning, supervised and unsu-
pervised approaches (Shmatko et al. 2022). Reinforcement 
learning can help computer programs learn procedures, such 
as playing games, or navigating agents in a virtual world 
(Vinyals et  al. 2019). Recently, reinforcement learning 
has been applied for medical applications, but it remains 
a niche approach in cancer research right now (Yala et al. 
2022). Supervised techniques use labeled data to train a 
model, which then learns to predict the output based on the 
input. This is accomplished by feeding the model a series of 
input–output pairings known as training data, after which 
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the model learns to maps the inputs to the matching outputs. 
This method is often used in problems including classifi-
cation, regression, and prediction. Supervised techniques 
may be utilized in medical applications for tasks such as 
diagnosis, prognosis, and therapy planning. Unsupervised 
learning methods, on the other hand, do not use labeled data. 
Instead, the model is given a set of inputs and is expected to 
discover patterns or structure in the data on its own. Clus-
tering, dimensionality reduction, and anomaly detection are 
examples of such tasks. Unsupervised techniques in medi-
cal applications can be used to identify subgroups within a 
patient population, find hidden patterns in medical imag-
ing data, and detect aberrant patterns in datasets in general. 
Concerning clinical routine, supervised methods are more 
common, while unsupervised methods are sometimes used 
in medical research. In this article, we focus on supervised 
methods.

Within supervised ML, many different methods exist, and 
one way to distinguish them is by their model complexity, 
i.e., the number of trainable parameters. Most traditional ML 
methods which were used up until 2012 had dozens, hun-
dreds or thousands of parameters per model. This includes a 
range of methods such as k-means clustering, support vector 
machines (SVMs), shallow neural networks, decision trees 
and random forests. Empirically, these methods are useful 
for structured data, such as tabular data, and to some degree 
for unstructured data, for example to classify image features 

which are extracted from radiology images according to pre-
defined rules. Here, we refer to these methods as “Classi-
cal” ML. Since 2012, deep neural networks have emerged 
as a new tool with broad applications in medicine. Today’s 
deep neural networks build on mathematical theory, com-
puter algorithms and hardware developed over many dec-
ades. Deep neural networks are different from “classical” 
ML methods in that they have millions or billions of param-
eters, and hence a much larger capacity to learn complex 
patterns. The use of deep neural networks is called “Deep 
Learning” (DL) and has become the dominant approach to 
process image, text, and other types of unstructured data in 
medicine. In the recent biomedical research literature, most 
“AI” studies are based on DL (Topol 2020, 2019). Medical 
applications of DL include diagnosis of disease, prediction 
of therapy outcomes, side effects or long-term prognosis.

Application areas: How to use AI 
in hematology and oncology?

Overview

AI methods can be used to address a broad range of clinical 
problems in hematology and oncology. In a consensus agree-
ment of the AI working group, six classes of AI methods 
with established medical applications or potential clinical 

Fig. 1  Artificial intelligence 
in oncology. A A simplified 
visualization of key methodo-
logical areas in oncological data 
science with example methods. 
B An expert-based definition 
of key fields of application of 
AI in oncology. Abbreviation: 
NLP natural language process-
ing, RWD real-world data, HER 
electronic health record, PRO 
patient-reported outcomes
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relevance were summarized (Fig. 1B). These methods are 
applicable to a broad range of clinical problems and can 
process a range of different data formats (Table 1). However, 
it should also be noted that there are AI approaches that can 
fall into several categories, e.g., when image and -omics data 
are jointly analyzed. In the following sections, each of these 
AI systems will be explained and examples for practical use 
cases will be given.

Image analysis systems

The analysis of digital images is one of the most com-
mon applications of AI in oncology (Kleppe et al. 2021;  
Shmatko et al. 2022; Farina et al. 2022; Shreve et al. 2022; 
Luchini et al. 2022; Echle et al. 2021). In fact, most clini-
cally approved algorithms using AI in medicine are related 
to image data (Benjamens et al. 2020; Muehlematter et al. 
2021; Alexander et al. 2020). Images are often prone to sub-
jective human interpretation, and especially reading medi-
cal imaging data requires years of training. Given sufficient 
training data, computer models have been shown to be able 
to perform on narrow tasks at the level of human experts 
(Shmatko et al. 2022; Shen et al. 2019; Nagendran et al. 
2020; Tschandl, et al. 2020). For example, AI has been used 
successfully to diagnose diseases such as diabetic retinopa-
thy (Natarajan et al. 2019; Sosale 2020; Quellec et al. 2021), 
melanoma (Balasubramaniam 2021; Brinker et al. 2019), 
or lung cancer (Jacobs et al. 2021; Ibrahim et al. 2021) 
from image data. In addition, AI may be able to detect fea-
tures that are not immediately apparent to the naked eye. 
For example, the prognosis of lung cancer patients can be 
predicted from routine computer tomography image data. 

Traditionally, in the 2010s, “Radiomics” machine-learning 
methods have used sets of expert-defined visual “features”, 
coupled with simple ML models (Aerts et al. 2014). More 
recently, end-to-end Deep Learning has been increasingly 
applied to such tasks (Ghaffari Laleh et al. 2022).For exam-
ple, AI has been used to prognosticate the course of colorec-
tal cancer from digitized histopathology image data (Skrede 
et al. 2020), or to predict the response to immunotherapy 
from radiological imaging data (Trebeschi et al. 2019; Wu 
et al. 2019; Ligero et al. 2021). Also, AI has been used to 
predict the presence of genetic alterations from image data 
(Shmatko et al. 2022; Kockwelp, et al. 2022; Kather et al. 
2020), and is being discussed as a potential way to pre-
screen patients for targeted molecular testing (Shmatko et al. 
2022). Thus, AI-based image analysis systems can serve two 
purposes in oncology: they can speed up diagnostic pro-
cesses, make them more consistent and readily available 
even in low-resource settings. On the other hand, AI-based 
image analysis systems can in some circumstances extract 
prognostic or predictive information from images, and thus 
serve as a biomarker for precision oncology. In both types of 
applications—automation and biomarkers—rigorous clinical 
evidence is required before these systems are used broadly 
in clinical routine (Geis et al. 2019).

Bioinformatics systems

Omics technologies (e.g., genomics, proteomics, metabo-
lomics) generate large amounts of data that can be difficult 
for humans to interpret (Eraslan et al. 2019; Elmarakeby 
et al. 2021; Lipkova et al. 2022). In the last decades, com-
puter-based methods to analyze these data have co-evolved 

Table 1  An overview of AI systems in hematology and oncology with example applications

AI methods and applications Source data (examples) Clinical application in hematology and oncology 
(examples)

Image analysis systems Radiology and nuclear medicine imaging 
data, histopathology image data, endoscopy, 
dermatoscopy, and others

aiding the diagnosis of tumors, assessing and 
predicting response to a given treatment, prog-
nostication of the clinical course

Bioinformatics systems Genetic sequencing data, and other -omics 
technologies

defining signatures of response to oncological 
treatments and targetable tumor subtypes

Natural language processing (NLP) systems Spoken language or written notes (free text, 
unstructured data)

to automate the documentation or provide 
medical knowledge to doctors and patients, 
to extract data for further analysis from text, 
dialog systems (chatbots), analyze medical 
notes

Systems for real-world data (RWD) analysis Electronic health records (EHR) and patient-
reported outcomes (PRO)

Identification of adverse events, recommendation 
of treatment strategies

Decision support systems Clinical and molecular data, data from multi-
disciplinary tumor boards, clinical data, time 
series

Recommendation of treatment strategies for a 
given patient

Medical-device related systems Measurements from physical sensors, such as 
wearables and smart watches

(out)patient monitoring and prediction of treat-
ment related complications
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with the laboratory assays (Shmatko et al. 2022). For exam-
ple, the development of genome sequencing assays has been 
accompanied by the development of algorithms for sequence 
alignment and variant calling. Many bioinformatic machine-
learning methods were developed for selecting molecular 
features and constructing molecular classifiers for disease 
entities or prognosis (Horn et al. 2018; Staiger et al. 2020). 
The development of all these methods has predated the era 
of Deep Learning. In fact, Deep Learning does not have 
a role in standard genetic diagnostics of cancer. However, 
additional useful information may be hiding in genome 
sequences and other -omics data. Several studies in the last 
few years also proposed Deep Learning methods to identify 
subtle patterns that were not identifiable by classical sta-
tistical approaches (Eraslan et al. 2019; Zeng et al. 2021; 
Tran et al. 2021). For example, AI has been used to predict 
outcomes and treatment response from sequencing data in 
cancer (Huang et al. 2020). Furthermore, -omics data might 
be combined with other data types (e. g., histopathology) to 
predict the clinical outcome of cancer patients more accu-
rately (Chen et al. 2022). Researchers hope that by under-
standing genetic variants and their interplay in cellular net-
works in tumors they can find new therapeutic approaches, 
such as identifying potentially targetable neoantigens. 
Another field of application is the analysis of single-cell 
sequencing data often relying on neural network approaches 
such as variational auto-encoders. However, there is still a 
long way to go from academic research studies to embedding 
modern AI methods in clinical routine practice of genomi-
cally guided precision oncology.

Natural language processing (NLP) systems

NLP is a branch of AI that deals with the interpretation and 
manipulation of human language (Yim et al. 2016; Sorin 
et al. 2020; Kung, et al. 2022; Yang et al. 2022; Singhal, 
et al. 2022). For example, NLP is used in chatbots and digi-
tal assistants such as Siri or Alexa, which are capable of 
understanding natural language commands and providing 
relevant information in response. In medicine, language 
is often used as an unstructured way to store and transmit 
information. In this context, NLP can be used to extract 
information from clinical reports or electronic health records 
(Yang et al. 2022; Thomas et al. 2014). It should be noted 
that current systems do not simply search and extract text but 
integrate the context (e.g., it is essential whether a diagnosis 
is present or excluded or how the temporal dependencies 
between reported events are). This information can then be 
used to support decision-making or generate predictions 
about disease progression or response to therapy. Although 
applications of NLP in oncology have been proposed more 
than five years ago (Yim et al. 2016), limitations of NLP 
methods have precluded widespread use. However, the 

research field of NLP is evolving rapidly and applications 
which were unimaginable as little as one or two years ago 
are now reality. Most recently, at the end of 2022, new large 
language models (LLMs) GPT-3 and its variant chatGPT 
by the company OpenAI have raised broad interest. Modern 
LLMs can converse like humans, can respond to questions 
in medical examinations (Kung, et al. 2022) and generally 
can be used as a search tool, in particular to answer medical 
questions. In the next few years, we expect an exponential 
increase in the application of NLP in oncology. Human-level 
NLP systems are just emerging and hence, the process to 
translate this technology to clinical value in oncology is also 
just beginning.

Real‑world data (RWD) analysis systems

Electronic health records (EHR) are at the core of docu-
menting any patient contact in oncology, and also integrate 
multimodal data related to the diagnosis of cancer and bio-
markers for precision oncology (Parikh et al. 2022; Morin 
et al. 2021; Araki et al. 2022). Much EHR data are unstruc-
tured or just loosely structured, making it difficult to mine 
historically. Moreover, such data is often distributed across 
different primary IT systems (e.g., laboratory information 
system or a hospital information system), which in turn may 
not be designed to support interoperability (the ability of a 
system to function effectively with other systems). AI meth-
ods have been applied to EHR data and promise to make the 
data available in a structured way and extract hidden value 
from the EHR data (Morin et al. 2021; Araki et al. 2022). 
Poor design of EHR is an unpleasant experience for many 
doctors and contributes to physician burnout (Muhiyaddin 
et al. 2022; Tajirian et al. 2020; Kroth et al. 2019). Thus, 
AI-based support systems to parse EHR data could be use-
ful for users. EHRs often contain time series data which are 
challenging to analyze, but have been analyzed with neural 
networks or dynamical models (Kheifetz and Scholz 2019; 
Tomašev et al. 2019). While EHR comprises mostly data 
generated by healthcare staff, the patient perspective can 
be underrepresented. This gap is filled by patient-reported 
outcome- and experience measures (PROMs, PREMs) 
including a data source of the patient’s perspective which is 
increasingly being acknowledged in oncology as clinically 
relevant outcome measures in clinical trials and in certi-
fication processes evaluating health care in cancer centers 
(Parikh et al. 2022). EHR and PROM/PREM data are part 
of the loosely defined category of “real-world data” (RWD). 
We expect the AI-based analysis of RWD to be of much 
higher importance in the coming years, based on technologi-
cal advances in multimodal AI models, NLP, and structured 
efforts to extract value from these data (Hegselmann, et al. 
2022). The technology is now ready to be applied to many 
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use cases, but progress in the field will be limited by ask-
ing the right medical questions, identifying useful ways to 
apply this technology in the clinic and the data quality of the 
original documentation.

Decision support systems

Several AI systems have been developed to automate part of 
the complex decision-making process in oncology (Kheif-
etz and Scholz 2019; Schmidt 2017; Rodríguez Ruiz et al. 
2022). Some of them use multidisciplinary tumor boards 
as a blueprint. The defining feature of such boards is that 
specialists from different disciplines (e.g., surgery, medi-
cal oncology, radiation oncology, radiology, pathology) 
come together to discuss individual patient cases and make 
treatment recommendations. The clinical history of a given 
patient, all available results from diagnostic tests, patient 
preferences and current medical evidence are integrated in 
this process (Frank 2022). The level of complexity in clini-
cal decision-making in multidisciplinary tumor boards is 
increasing with the expanding significance of genomic and 
molecular data for personalized treatment recommendations 
in cancer care (Büttner et al. 2019; Horak et al. 2021). As 
early as 2012, large-scale and well-funded programs have 
aimed to automate such recommendations, but so far, they 
have not reached clinical routine due to the complexity of 
extracting standardized recommendations from inconsistent 
data (Schmidt 2017). Despite these experiences in the past, 
the use of AI to automate decision-making in a way analo-
gous to multidisciplinary tumor boards is still being com-
monly mentioned as a promising application. (Rodríguez 
Ruiz et al. 2022)

Medical hardware‑related systems

For users, the boundaries between medical hardware devices 
and consumer devices are blurring more and more and 
wearable sensors are becoming more common. For exam-
ple, smart watches are widely used nowadays and can col-
lect a wide variety of data, including information on heart 
rate, oxygenation, and movement. AI algorithms may be 
able to make sense of these high-dimensional data and pro-
vide insights into a patient's health (Sabry et al. 2022). For 
example, wearable sensors have been used successfully to 
detect early signs of disease such as sepsis (Ghiasi 2022). 
In hematology, this could be used to identify patients at risk 
for severe side effects and impending organ failure, includ-
ing patients after myelosuppressive chemotherapy or stem 
cell transplantation (Nessle et al. 2022). Despite the obvious 
potential in this area, clinical evidence is still scarce and only 
a few dozen published studies have investigated an applica-
tion of AI-based analysis of wearable sensor data in oncol-
ogy (Sabry et al. 2022; Ghiasi 2022). Often, such systems 

do not meet the criteria for regulatory approval as medical 
devices—especially if led by academic researchers. Again, 
this area will depend on hematologists and oncologists iden-
tifying the clinical need for new studies, running proof-of-
concept studies and ultimately creating clinically relevant 
evidence how AI can be used for a patient benefit using 
properly designed clinical trials.

Discussion and limitations

Where are we headed?

In this article, we defined six main application areas in 
hematology and oncology where AI is already contribut-
ing or can contribute in the future. Some of these areas are 
already quite mature, for example, in AI-based image analy-
sis, there are already dozens of approved medical devices 
that can be used in everyday clinical practice. Basic research 
or proof-of-concept work is still required in other areas, such 
as the support or partial automation of tumor board recom-
mendations, modeling of individual time series data or the 
evaluation of sensor data with AI. Because of recent tech-
nological advances in AI, this technology is permeating our 
society more and more, and it is very likely that clinical 
management of patients in hematology and oncology will 
further benefit from AI approaches. As a result, it is critical 
that the transition to AI-assisted hematology and oncology 
is closely accompanied by a respective medical informat-
ics infrastructure, new clinical trial concepts, and improved 
acceptance by doctors and patients.

Data privacy and security

Whenever personal digital data are collected and linked 
together, the question of data privacy for the subject arises. 
It goes without saying that data in medicine must be securely 
stored, transferred, and protected from unauthorized access. 
This raises new issues in the age of artificial intelligence. 
Under certain conditions, it is possible to extract raw data 
from an AI network that has been trained on medical data 
and then published or sold for further use. In recent years, 
technological advancements such as differential privacy 
and secure multi-party computation have attempted to 
address this problem by introducing noise into the raw data 
of the training set or by privacy preserving computational 
approaches. However, in any case, it is critical that if pos-
sible, anonymized raw data are included from the start of 
the training process, and that, as is standard in medicine, 
an ethical approval and informed consent of the patient is 
available prior to the use and evaluation of patient-related 
data. (Seastedt et al. 2022)
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Biases, robustness and generalizability

Biases are another weakness of artificial intelligence and 
are particularly apparent in data-driven supervised machine-
learning approaches (Andaur Navarro, et al. 2023). Machine-
learning networks recapitulate and learn subtle patterns from 
training data, but these patterns are distorted in medicine 
and almost every other area of society due to prejudices and 
structural disadvantages for specific groups of people. If, 
for example, in the population represented in the training 
data, the implementation of complex molecular diagnostics 
is affected by place of residence, socio-economic factors, 
education, age, gender, or other factors, AI networks will 
learn these patterns on multiple levels and will eventually 
be able to apply them. Thus, use of an AI algorithm in the 
clinic may not generalize well enough to represent the diver-
sity of future patients and therefore have an adverse effect 
on certain patient groups. The same is true if AI algorithms 
are trained and tested even on very large data sets from sin-
gle institutions. Finally, high-parametric models are prone 
to overfitting, which reduces the performance in samples 
not used for model calibration. There is no perfect techni-
cal solution against such biases, but it is critical that both 
scientists and developers who set up the machine learning / 
AI system, as well as the end users, are made aware of them. 
Moreover, it should also be remembered that an appropriate 
study design is key to answer certain research questions (i.e., 
to evaluate the efficacy of an AI system, new concepts for 
randomized controlled trials will be needed). Further basic 
research in oncology is required to quantify the existence 
of such biases and to identify suitable areas of applications 
of these approaches and the potential harm to patients. It is 
precisely here that we see an important role for hematolo-
gists and oncologists, who, together with patients and patient 
advocacy groups, must ensure that such new technologies 
ultimately serve the well-being of patients and do not dis-
advantage specific patient groups based on their ethnicity, 
age, or other characteristics.

Explainability and integration into clinical routines

Despite the possibilities of AI methods for hematology 
and oncology, these technologies often lack explainability 
since the underlying quantifications are based on highly 
complex calculations or learned network parameters which 
are not always directly relatable to biological mechanisms 
or structures. Despite the success of so-called explainable 
AI strategies (Minh et al. 2022), there are still many chal-
lenges, especially once these algorithms are used in critical 
situations such as clinical diagnoses and predictions (Ghas-
semi et al. 2021). Therefore and especially in the healthcare 
context, additional strategies have to be developed to enable 
informed clinical decisions. A possible approach could be to 

inform hypotheses-free neural network models by biological 
knowledge or by relating learned network structures or clas-
sifiers to biological quantities or risk factors. Integration of 
AI into clinical reasoning has to be done carefully, meaning 
that the computed results need to be treated as additional 
evidence helping clinicians to gain a more complete picture. 
We see this as an important area of fundamental research for 
the next few years.

Digital literacy and AI literacy

We expect that physicians will be increasingly confronted 
with artificial intelligence applications in the future. (Mosch 
et al. 2022) It is, therefore, imperative that the ability to 
assess the outputs of such artificial intelligence systems is 
part of medical education and training. Even today, simple 
computer skills pose a challenge to some doctors, such as 
typing quickly on keyboards or the intuitive use of graphical 
user interfaces. In the future, the complexity of our world 
will continue to increase massively due to artificial intel-
ligence, and that makes it necessary for doctors to continu-
ously learn the required skills during their studies, and later, 
in their careers. We see a particularly important role here for 
medical professional societies, which will set up and imple-
ment the appropriate further training curriculum for doctors.

Outlook

We expect that AI will be broadly used to aid clinical deci-
sion-making and improve the quality of care in the near 
future. While these technologies are maturing fast, the sen-
sible clinical use of AI in hematology and oncology is deter-
mined by defining appropriate areas of application and by 
establishing the required IT infrastructures. Moreover, as for 
every new treatment concepts, AI-based approaches need to 
demonstrate their superiority in well-designed clinical trials. 
AI methods could result in disruptive changes in the clinical 
practice. For example, access to data may change, and treat-
ment decisions may become more and more influenced by IT 
systems rather than practitioners. Thus, the way medicine is 
performed requires monitoring and guidance. In Germany, 
large-scale medical informatics initiatives have been pro-
posed as platforms to facilitate data-intensive research with 
clinical routine data. However, on top of this, new clinical 
trial strategies are also required to prove the advantage of 
such AI-guided individual therapy concepts. In all of these 
efforts, patients, physicians and a network of experts in 
methodology should guide and lead the AI transformation 
of hematology and oncology and that professional medical 
societies such as the German Society for Hematology and 
Oncology (DGHO), the German Association for Medical 
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Informatics, Biometry and Epidemiology (GMDS), and the 
German Informatics Society (GI), Special Interest Group 
Digital Health, together with other established initiatives 
and professional societies, will accompany and supervise 
this process.
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